Bus HVAC energy consumption test method based on HVAC unit

#1
Comfortable journey with commercial buses is an essential goal of transportation companies. An air-conditioning system can play an important role for this comfortable journey but it can put extra load on the engine and extra cost in the fuel consumption. The purpose of this work is to increase the performance of air-conditioning system of the buses by reducing the load on the engine and fuel consumption. Using a two-phase ejector as an expansion valve can increase the coefficient of performance (COP) of the air-conditioning system. An improvement in the COP can reduce the empty vehicle weight and fuel consumption of buses. Two-phase ejector dimensions can be determined using the empirical methods available in the literature. In this paper, the two-phase ejector dimensions of air conditioning system for a bus are calculated using the analytical and numerical methods. First of all, the thermodynamic analysis of the vapor-compression refrigeration cycle with a two-phase ejector is performed, and then the ejector dimensions are subsequently determined. The cooling loads of the midibus and bus with R134a as a refrigerant are assumed to be 14Â kW and 32Â kW, respectively. The total length of the two-phase ejector for the midibuses and buses due to these cooling loads, are computed to be 480.8Â mm and 793.1Â mm, respectively. Also, an experimental setup is installed on a
You do not have permission to view link Войдите или зарегистрируйтесь.
to turn it into the ejector air conditioning system to validate theoretical results with the experimental study. - Highlights: • Determination of two-phase ejector dimensions of a bus air-conditioning system. • Thermodynamic analysis of the two-phase ejector cooling system. • Experimental study on a midibus
You do not have permission to view link Войдите или зарегистрируйтесь.
using two-phase ejector.

A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented. A novel strategy for automatic control of the AC system was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost. A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented.

A novel strategy for automatic control of the
You do not have permission to view link Войдите или зарегистрируйтесь.
was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 deg. C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost.
 
Сверху